Press release from European Neuropsychopharmacology

Magnetic stimulation of the brain may help patients with cocaine addiction.

Embargo: 00.01 (Central European Time) Friday 4th December, 2015

Baltimore, MD Targeted magnetic pulses to the brain were shown to reduce craving and substance use in cocaine-addicted patients. The results of this pilot study, published in the peer-reviewed journal *European Neuropsychopharmacology*, suggest that this may become an effective medical treatment for patients with cocaine addiction, although a larger trial is needed to confirm the initial findings.

Cocaine use is widespread in the Western World. Last year, 2.3 million young Europeans (aged 15 to 34) used cocaine, and the US National Institute on Drug Abuse estimates that 1.4 million Americans suffer from cocaine addiction1. There is no effective drug treatment for cocaine addiction, with behavioural therapies being the main element of any treatment regime. Now a group of researchers working in Italy and the USA have shown in a preliminary clinical study that cocaine use can be reduced by treatment with rTMS (repetitive Transcranial Magnetic Stimulation).

As author, Dr Antonello Bonci (Scientific Director, National Institute on Drug Abuse, and Adjunct Professor, John Hopkins University, Baltimore) said:

“Despite the fact that more than 20 million people worldwide suffer from cocaine use disorders2, there are no effective neurobiological treatments for patients with this devastating condition”.

The practical work was conducted by team of scientists led by Dr Luigi Gallimberti, from the University of Padova Medical School, Italy, who enrolled 32 patients who were seeking treatment for cocaine addiction at the hospital clinic. The participating patients were randomized to receive either rTMS or standard symptom-relieving medications.

The experimental group received one rTMS session per day for five days, and then once a week for the following three weeks, for a total of 8 TMS sessions over 29 days. Those in the control group received pharmacological treatment for symptoms associated with cocaine addiction (such as depression, anxiety and sleep problems). The study indicated the safety of rTMS in patients with cocaine addiction. There was significantly less craving and there were a significantly higher number of cocaine-free urine drug tests in the rTMS compared to the control group. In addition, 69% (11/16) patients in the experimental group showed no relapse to cocaine use, whereas only 19% (3/16) patients in the control group showed a similar positive result (the results are adjusted for patients who dropped out of the trial).

Dr Bonci said:

“rTMS is a non-invasive and very safe therapeutic approach which is used with other mental health and neurological conditions, such as depression and neuropathic pain. Our study suggests that rTMS may also represent a new treatment for patients with cocaine use disorder”.

At the end of the first 29 days of the experiment, the experimental group was given the option of continuing the treatment, whereas those in the control group were given the possibility of receiving...
the same rTMS treatment as the experimental group for 63 days. Results further confirmed the beneficial effects of rTMS in helping patients to maintain abstinence from cocaine.

Dr. Bonci continued:

We consider this study promising but preliminary. We need to replicate the work in a bigger group of patients using sham-TMS as the control condition. As far as we know, this work represents the first clinical report indicating that rTMS treatment results in significant reduction in cocaine use. It is also important to emphasize that, in this study patients were seeking treatment for their cocaine addiction in a hospital setting: the group studied, albeit small, was a “real world” sample. We have continued to follow patients from the trial, and the improvement seems to be sustained over time, up to 12 months, although we don’t have any hard data on that yet. It is important that this is taken forward to a larger trial.

We decided to target an area of the brain involved in decision making, the dorsolateral prefrontal cortex (DL PFC). This was because previous animal studies from our lab had shown that compulsive cocaine-seeking was associated with hypoactivity in the prelimbic cortex, which is a brain area that shares similar behavioural roles to the DL PFC. Importantly, we had found that increasing the activity in the prelimbic cortex could significantly reduce cocaine self-administration.

Commenting European Neuropsychopharmacology editor, Dr Andreas Meyer-Lindenberg (Mannheim) said,

“This study represents a creative approach to a disorder that is notoriously difficult to treat in the real world. These pilot data also show that biological treatments nowadays reach far beyond medications and that new neuroscience methods may be used for targeted changes in brain regions relevant for complex mental disorders”.

ENDS

Notes for editors

Please mention the journal *European Neuropsychopharmacology* in any article.

European Neuropsychopharmacology is the official journal of the European College of Neuropsychopharmacology (ECNP), www.ecnp.eu

Contacts

- **Dr Antonello Bonci** antonello.bonci@nih.gov
- **Andreas Meyer-Lindenberg** A.Meyer-Lindenberg@zi-mannheim.de
- **European College of Neuropsychopharmacology** press officer, Tom Parkhill tom@parkhill.it tel +39 349 238 8191

Notes

Cocaine Use Disorder is defined in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), which serves as a reference manual for psychiatric diagnosis.

Paper details: Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: a pilot study DOI: 10.1016/j.euroneuro.2015.11.011

This paper will be available after the embargo at: http://www.europeanneuropsychopharmacology.com/

Alberto Terraneo1, Lorenzo Leggio2,3,4, Marina Saladini5, Mario Ermani5, Antonello Bonci2,6,7 and Luigi Gallimberti1
1IRCCS San Camillo, Venezia, Italy; 2National Institute on Drug Abuse (NIDA) Intramural Research Program, Baltimore, MD; 3Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD; 4Center for Alcohol and Addiction Studies, Brown University, Providence, RI; 5Department of Neuroscience, University of Padua, Italy; 6Solomon H. Snyder Neuroscience Institute, Johns Hopkins University School of Medicine, Baltimore, MD; 7Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD.

ABSTRACT Recent animal studies demonstrate that compulsive cocaine seeking strongly reduces prelimbic frontal cortex activity, while optogenetic stimulation of this brain area significantly inhibits compulsive cocaine seeking, providing a strong rationale for applying brain stimulation to reduce cocaine consumption. Thus, we employed repetitive transcranial magnetic stimulation (rTMS), to test if dorsolateral prefrontal cortex (DLPFC) stimulation might prevent cocaine use in humans. Thirty-two cocaine-addicted patients were randomly assigned to either the experimental group (rTMS) on the left DLPFC, or to a control group (pharmacological agents) during a 29-day study (Stage 1). This was followed by a 63-day follow-up (Stage 2), during which all participants were offered rTMS treatment. Amongst the patients who completed Stage 1, 16 were in the rTMS group (100%) and 13 in the control group (81%). No significant adverse events were noted. During Stage 1, there were a significantly higher number of cocaine-free urine drug tests in the rTMS group compared to control (p=0.004). Craving for cocaine was also significantly lower in the rTMS group compared to the controls (p=0.038). Out of 13 patients who completed Stage 1 in the control group, 10 patients received rTMS treatment during Stage 2 and showed significant improvement with favorable outcomes becoming comparable to those of the rTMS group. The present preliminary findings support the safety of rTMS in cocaine-addicted patients, and suggest its potential therapeutic role for rTMS-driven PFC stimulation in reducing cocaine use, providing a strong rationale for developing larger placebo-controlled studies.

Funding: The authors would like to acknowledge the following funding sources: Department of Neuroscience of the University of Padua, Italy (AT, MS, MA, LG), “Novella Fronda” Foundation, Italy (AT, LG), NIDA Intramural Research Program (LL, AB) and NIAAA Division of Intramural Clinical and Biological Research (LL)