Central administration of interleukin-1β elevates brain kynurenic acid and disrupts PPI

Markus K. Larsson¹, Lilly Schwieler¹, Göran Engberg¹, Susan B. Powell², and Sophie Erhardt¹

Introduction
Patients with schizophrenia and bipolar disorder display elevated central levels of the pro-inflammatory cytokine interleukin-1β (IL-1β) and of kynurenic acid (KYNA). Both KYNA and IL-1β are predominantly elevated in those bipolar patients that have had a psychotic episode. Moreover, pharmacologically elevated levels of KYNA in rodents have been shown to disrupt prepulse inhibition (PPI).

Aim
The aim of the present study was to investigate if IL-1β influences the synthesis of brain KYNA in mice and if administration of IL-1β affects PPI.

Conclusions
Present results support the hypothesis that IL-1β and KYNA are important players in the pathophysiology of psychotic diseases, such as schizophrenia and bipolar disorder.

Notably, only administration of the lowest dose IL-1β disrupted PPI, indicating that this effect may be mediated by the increased brain KYNA concentrations observed at this dose.

Present data are also in line with recent in-vitro data from our laboratory showing that IL-1β, by inducing tryptophan 2,3-dioxygenase, increase KYNA production in human cortical astrocytes.

Methods
C57BL/6 mice were injected intracerebroventricular (i.c.v.) with 0.5, 1, 5, or 10 ng IL-1β. The animals were sacrificed after 6 hours and brain KYNA was quantified. Another cohort of mice received 0.5, 5, or 50 ng of IL-1β and were tested for PPI deficits at several time points post-injection.

Acknowledgements
Swedish medical research council, NIH, Karolinska Institutet

E-mail: markus.larsson@ki.se
Telephone: 08-524 872 76
Website: www.ki.se

¹Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
²Department of Psychiatry, University of California, San Diego, CA, USA