Cortical Effects of Chronic Haloperidol Administration in rats.

Bloomfield P, de Paola V & Howes O.

Medical Research Council Clinical Sciences Centre, Imperial College London, United Kingdom (Dr Howes and Dr de Paola jointly supervise P Bloomfield.)

Background

Patients with schizophrenia are routinely prescribed antipsychotic medication. Magnetic resonance imaging (MRI) in newly medicated patients has demonstrated how, over a 5 year period, there is an average whole brain structural deficit of 8%, with regional losses of up to 20%, when compared to baseline [1]. A recent study investigating schizophrenic patients showed a regional increase in binding with the \(\text{[C11]PK11195} \) positron emission tomography (PET) radiotracer, which acts as a marker of neuroinflammation [2]. While these are changes since the start of medication, it is not possible to differentiate between changes arising from medication and those occurring with the disease progression. In the present study we dose naïve rats with haloperidol (Hal) to test the hypotheses that antipsychotics drugs induce brain volume loss and microglial activation. Recent studies have shown that microglial morphology is not a true representation of their level of activity, therefore in this investigation we use cell number as an indicator of inflammatory activity.

Aims

• Do antipsychotics cause cerebral volume/mass/density changes?
• Is there an inflammatory component?

Methods

We used subcutaneous drug pellets to slowly release Hal over a two-week period in randomized mixed caged of control (n=9) and medicated (n=9) male Sprague Dawley rats. The drug pellets released a 0.05 mg/kg/day dose, control animals were implanted with a placebo pellet. The dose used is a comparatively low dose in terms of preclinical literature, with a similarly low D2 receptor occupancy (~65%) when compared with clinical data (calculated from [4]).

Following perfusion, brains were dissected for post mortem analysis. The brain mass was measured and whole brain volumes were calculated using water displacement. Density was calculated from the mass and volume using the equation: Density = Mass/Volume. The cortical tissue was processed for histological analysis, and changes in microglial cell number were determined to assess neuroinflammatory changes. Microglial cells were stained with Ibranized calcium binding antibody 1 (Iba-1) and co-stained using vectashield with an incorporated DAPI (nuclear) stain. Images were acquired using a Leica confocal microscope and images were analysed using Cell Profiler software (fig. 1) [5].

Results 1

Here we show that there is a significant reduction in brain volume (fig. 2), mass (fig. 3) but not density (fig. 4) in Hal treated animals (1.58 cm\(^3\) (±1.1 SEM), 2.25g (±0.029 SEM)) when compared with placebo controls (2.17 cm\(^3\) (±1.5 SEM), 2.36g (±0.035 SEM)) (p<0.05, independent samples t-test). The body weight of animals did not significantly differ between the treatment groups (313g Placebo, 356g Hal p>0.05).

Results 2

Further to global cerebral changes, we aimed to determine the inflammatory impact of low dose antipsychotic treatment. Using histological analysis we observed a consistent increase in microglial number (colocalized Cy3/DAPI nuclei) across the 3 ROIs in drug treated animals with significant trend (p=0.07).

Conclusion

The results we have seen here show how a low dose of a typical antipsychotic medication is able to produce significant changes in the brains of naive rats. Further investigation is required to determine the full effects of these changes and the mechanism involved. An experiment investigating the effects of a higher dose regime is in progress and will elucidate the consequences further. While evaluating the results of this preliminary investigation, the impact of function needs consideration, as the changes we see here may not be detrimental to cognitive ability.

Acknowledgements

Keng Heng and Dirk Doorman in the Microscopy facility for the help with confocal image analysis and use of their pipeline.

References