Schizophrenia-related cognitive effects of hippocampal disinhibition: attentional and memory deficits

Stephanie McGarrity1,2, Kevin Fone3, Rob Mason3, Marie Pezze1,2 and Tobias Bast1,2

1School of Psychology, 2Neuroscience@Nottingham, 3School of Life Sciences
1lpxsm@nottingham.ac.uk

P.1.026

1 – Functional significance of hippocampal disinhibition in schizophrenia

Hippocampal disinhibition has emerged as key feature of schizophrenia pathophysiology (Lisman et al., 2008; Schoedl et al., 2009; Hecker & Konradi, 2010). However, the role in symptom generation remains to be clarified.

The hippocampus is associated with rapid acquisition and use of everyday-type memory, such as place memory, and temporal to intermediate hippocampus can mediate diverse behavioral-control processes via functional connectivity to prefrontal and subcortical sites (Bast, 2011).

To test this hypothesis, we combined disinhibition of temporal to intermediate hippocampus by local microinfusion of the GABA-A receptor antagonist picrotoxin with behavioral and electrophysiological analyses in Lister hooded rats.

Experimental strategy

To test this hypothesis, we combined disinhibition of temporal to intermediate hippocampus by local microinfusion of the GABA-A receptor antagonist picrotoxin with behavioral and electrophysiological analyses in Lister hooded rats.

References

2 – Locomotor hyperactivity

Locomotor hyperactivity

Locomotor hyperactivity may often reflect dopamine hyperfunction and, for this reason, has long been used as a simple psychosis-related behavioral index.

Subconvulsive picrotoxin doses caused moderate locomotor hyperactivity.

3 – Attentional deficits

5-Choice-serial-reaction-time-task (5-CSRTT)

The 5-CSRTT resembles continuous performance tasks used to test for attentional and executive deficits in schizophrenia patients and is dependent on prefrontal cortex (Chudasama & Robbins, 2006).

Hippocampal disinhibition disrupted prefrontal-dependent attention, as indicated by a selective reduction of correct responses (no other measures were affected).

References

4 – Memory deficits

Delayed-matching-to-place (DMTP) watermaze test

The watermaze DMTP task resembles the everyday memory task of using newly learned place and route memory, with which schizophrenia patients have marked problems (Al-Uzri et al., 2006).

Waiting period

The task is highly hippocampus-dependent, especially the search-preference measure (Bast et al., 2009; Pezze & Bast, 2012).

Hippocampal disinhibition disrupted DMTP performance.

5 – Picrotoxin induces neuronal disinhibition within temporal to intermediate hippocampus

Electrophysiological recordings combined with hippocampal infusions

Channel oscillations outside hippocampus were excluded from analysis.

References

6 – Conclusions

Picrotoxin infusion increased neuron firing within temporal to intermediate hippocampus, consistent with neural disinhibition and mimicking hippocampal overactivity.

Disinhibition of the temporal to intermediate hippocampus caused schizophrenia-related attentional and memory deficits, indicating a causal relation between hippocampal disinhibition and two key cognitive symptoms in schizophrenia. In addition, hippocampal disinhibition caused locomotor hyperactivity, consistent with psychosis-related dopamine hyperfunction.

Hippocampal disinhibition may, thus, be a key target for novel pharmacological treatment strategies, which may be tested using our rat model.