THE INFLUENCE OF MATERNAL CORTISOL AND EMOTIONAL STATE DURING PREGNANCY ON FETAL INTRAUTERINE GROWTH

Hompes T.1, Vrieze E.1, Fieuws S.1,2,3, Van Bree R.1,2,3,4,5, Van den Bergh B.1,2,3,4,5, Jaspers L.1,2,3,4,5, Schops G.1,2,3,4,5, Demyttenaere K.1,2,3,4,5, Vlieze E.1,2,3,4,5, Demets T.1,2,3,4,5, Verhaeghe J.1,2,3,4,5, Spitz B.1,2,3,4,5, Allegaert K.1,2,3,4,5

1University Hospitals Leuven (Belgium); 2Department of psychology; 3Department of Gynaecology and Obstetrics; 4Pediatric department; Leuven Biostatistics and Statistical BioInformatics Centre (L-BioStat) – Katholieke Universiteit Leuven; 5Tilburg University (The Netherlands).

OBJECTIVE

- **Aim**: Investigate the influence of maternal cortisol & emotional state during pregnancy on fetal intrauterine growth.
- **Expectation**: Higher fetal cortisol levels, or more depressive and anxious complaints during pregnancy, associated with slower IUG and lower birth weight.

METHOD

- **Inclusion at University Hospitals Leuven (n = 100)**
 - 8-12 weeks pregnant

- **Exclusion**: Somatic disorders/medication interfering with HPA-axis (n = 7)

- **Exclusion**: Multiple pregnancies (n = 91)

Mothers were seen once each trimester at the outpatient clinic:
1. Psychological assessments consisted of:
 - Edinburgh Postnatal Depression Scale (EDPS), Hospital Anxiety and Depression Scale (HADS-A & HADS-D), Pregnancy Related Anxiety Questionnaire (PRAQ) & Maternal Fetal Attachment Scale (MFAS).
 - The diurnal cortisol profile was derived from the saliva samples taken at 2 consecutive days.
2. IUG was evaluated using ultrasound.

STATISTICAL ANALYSIS

Was performed using SPS517.0. In each trimester a univariable model as well as a multiple regression model was used to predict IUG measures and birth weight. To reduce the number of predictors in the regression models, three principal component analyses (PCA) were performed; i.e. on variables measuring:
- (1) anxiety (HADS-A & PRAQ subscales),
- (2) depression (EDPS & HADS-D), and
- (3) attachment (MFAS).

Cortisol ['area under the curve', AUG] was used as a fourth predictor. Relevant covariates (p<0.05) were included in the regression models.

RESULTS

UNIVARIABLE & MULTIPLE REGRESSION MODEL

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Body Weight</th>
<th>BMI-Birth</th>
<th>Pandal Index Birth</th>
<th>1st Trim.</th>
<th>2nd Trim.</th>
<th>3rd Trim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortisol</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attachment</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Cortisol significantly predicted the variance of weight and BMI at Birth
- Depressive symptoms influenced the variance of BMI and Ponderal Index at birth
- A depressive profile was an important predictor in the univariable models of head circumference at third trimester and birth as well as the abdominal – head circumference ratio.

CONCLUSION

- Basal cortisol levels had a significant influence on several growth variables in the 2nd trimester and on the growth trajectories between 2nd and 3rd trim.
- Attachment significantly influenced the growth trajectories between 2nd and 3rd trimester.
- Attachment & Depressive symptoms were important for fetal growth in 3rd trimester as well.

Evidently, these are exploratory data in a relatively small sample size, and replication in further studies is needed.