GENE-GENE INTERACTIONS IN EXPLAINING HERITABILITY ESTIMATES FOR PSYCHOTIC ILLNESS: MODELLING EPISTASIS

John L. Waddington
Molecular & Cellular Therapeutics
Royal College of Surgeons in Ireland, Dublin
DISCLOSURE

These studies were supported by Science Foundation Ireland

The authors have no potential conflict of interest to disclose
PSYCHOTIC ILLNESS
Diagnostic boundaries unclear
Risk factors are promiscuous and extend beyond psychosis to a milieu of developmental disorders
Dimensional approach (RDoC?)

van Os & Kapur 2009
<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Base-pair position</th>
<th>Nearest gene</th>
<th>Alleles</th>
<th>Frequency</th>
<th>Imputation quality score</th>
<th>p value</th>
<th>OR (95% CI)</th>
<th>Heterogeneity p value</th>
<th>Best-fit model (BIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2535629</td>
<td>3</td>
<td>52808259</td>
<td>ITIH3 (+ many)</td>
<td>G/A</td>
<td>0.651</td>
<td>0.942</td>
<td>2.54 × 10^{-1}²</td>
<td>1.10 (1.07–1.12)</td>
<td>0.27</td>
</tr>
<tr>
<td>rs11191454</td>
<td>10</td>
<td>104649994</td>
<td>AS3MT (+ many)</td>
<td>A/G</td>
<td>0.910</td>
<td>1.01</td>
<td>1.39 × 10^{-8}</td>
<td>1.13 (1.08–1.18)</td>
<td>0.32</td>
</tr>
<tr>
<td>rs1024582</td>
<td>12</td>
<td>2272507</td>
<td>CACNA1C</td>
<td>A/G</td>
<td>0.337</td>
<td>0.98</td>
<td>1.87 × 10^{-8}</td>
<td>1.07 (1.05–1.10)</td>
<td>0.0057</td>
</tr>
<tr>
<td>rs2799573</td>
<td>10</td>
<td>18641934</td>
<td>CACNB2</td>
<td>T/C</td>
<td>0.715</td>
<td>0.825</td>
<td>4.29 × 10^{-8}</td>
<td>1.08 (1.05–1.12)</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Cross-Disorder Group of the Psychiatric Genomics Consortium Lancet 2013
<table>
<thead>
<tr>
<th>Locus</th>
<th>Copy number change</th>
<th>Odds ratio</th>
<th>Associated disorder(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1q21.1</td>
<td>Deletion Duplication</td>
<td>6.6–15.54</td>
<td>Sz, MR, seizures, autism</td>
</tr>
<tr>
<td>2p16.3 (NRXN1)</td>
<td>Deletion Duplication</td>
<td>7.5–8.97</td>
<td>Sz, MR, seizures, autism</td>
</tr>
<tr>
<td>3p26.1</td>
<td>Deletion Duplication</td>
<td>NA</td>
<td>Sz, MR, autism</td>
</tr>
<tr>
<td>3q29</td>
<td>Deletion</td>
<td>17</td>
<td>Sz, MR, autism</td>
</tr>
<tr>
<td>5p13.2</td>
<td>Deletion Duplication</td>
<td>NA</td>
<td>Sz</td>
</tr>
<tr>
<td>7q11.2</td>
<td>Duplication</td>
<td>NA</td>
<td>Sz</td>
</tr>
<tr>
<td>7q22.1</td>
<td>Duplication</td>
<td>NA</td>
<td>Sz</td>
</tr>
<tr>
<td>7q36.3</td>
<td>Deletion Duplication</td>
<td>4–8.26</td>
<td>Sz</td>
</tr>
<tr>
<td>15q11.2</td>
<td>Deletion Duplication</td>
<td>1.94–2.8</td>
<td>Sz, MR, autism</td>
</tr>
<tr>
<td>15q13.1</td>
<td>Duplication</td>
<td>NA</td>
<td>Sz</td>
</tr>
<tr>
<td>15q13.3</td>
<td>Deletion Duplication</td>
<td>9.9–12.1</td>
<td>Sz, MR, seizures</td>
</tr>
<tr>
<td>16p11.2</td>
<td>Duplication</td>
<td>8.3–26.3</td>
<td>Sz, MR, seizures, autism, ADHD, BD</td>
</tr>
<tr>
<td>16p13.1</td>
<td>Deletion Duplication</td>
<td>NA</td>
<td>Sz, MR, autism, ADHD</td>
</tr>
<tr>
<td>17p12</td>
<td>Deletion</td>
<td>7.82</td>
<td>Sz, HNPP</td>
</tr>
<tr>
<td>17q12</td>
<td>Deletion Duplication</td>
<td>∞</td>
<td>Sz</td>
</tr>
<tr>
<td>22q11.2</td>
<td>Deletion</td>
<td>21.6–∞</td>
<td>Sz, MR, autism, ADHD, OCD, anxiety, depression</td>
</tr>
</tbody>
</table>
GWAS META-ANALYSIS IN SCHIZOPHRENIA
[128 SNPs and 108 loci across 36,989 cases and 113,075 controls]

Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014
THE ‘MISSING HERITABILITY’ OF PSYCHOTIC ILLNESS

However, even these 108 genetic loci, identified by such enormous numbers of cases/controls, can explain only <25% of the heritability estimate for schizophrenia [70-80%]

‘Missing heritability’ applies to many disorders: where the total phenotypic variance that is explained by all known risk genes is less than the heritability evident from relationships among relatives

“Epistasis [G × G interactions] is a ubiquitous component of the genetic architecture of human health and disease” that may explain this ‘missing heritability’
Molecular mechanisms of epistasis within and between genes
Ben Lehner

Trends Genet 2011;27:323-331

Epistasis and quantitative traits: using model organisms to study gene–gene interactions
Trudy F. C. Mackay

Nat Rev Genet 2014;15:22-33

Detecting epistasis in human complex traits
Wen-Hua Wei, Gibran Hemani and Chris S. Haley

Nat Rev Genet 2014;15:722-733
HOW TO TRANSLATE THE ‘MENTAL HEALTH’ OF A MOUSE?

ETHOLOGICAL
Species-specific characteristics and settings: e.g. ethogram, nest building

TRANS-SPECIES
Positive symptoms: exploratory activity; prepulse inhibition
Negative symptoms: social behaviour
Cognitive dysfunction: working/recognition memory
HOW TO TRANSLATE THE ‘MENTAL HEALTH’ OF A MOUSE?

1. Activity monitor

2. Working memory

3. Recognition memory

4. Social behaviour

5. Prepulse inhibition

6. Elevated + maze

7. Light/dark box
How does simultaneous disruption of two risk genes alter the expression of schizophrenia-related phenotypes relative to individual disruption of either one of those genes?
PSYCHOTIC ILLNESS

Dimensional approach

van Os & Kapur 2009
PROBING GENE × GENE INTERACTIONS
Exploratory activity in a novel environment

O’Tuathaigh et al 2016
PROBING GENE × GENE INTERACTIONS
Prepulse inhibition

O’Tuathaigh et al 2016
PSYCHOTIC ILLNESS

Dimensional approach

More acute onset, better outcome

More insidious onset, poorer outcome

Psychosis:
delusions, hallucinations

Mania

Depression

Negative
symptoms

Cognitive
impairment

Affective dysregulation

Developmental impairment

van Os & Kapur 2009
PROBING GENE × GENE INTERACTIONS
Memory for a novel object

O’Tuathaigh et al 2016
PSYCHOTIC ILLNESS

Dimensional approach

van Os & Kapur 2009
NRG1 × DISC1
Double mutant

Sociability

NRG1 heterozygous - N
DISC1 heterozygous - D
DISC1 homozygous - D

Genotype

O’Tuathaigh et al 2016
PROBING GENE × GENE INTERACTIONS AND DIMENSIONALITY

NRG1 × DISC1 mutant model

- Exploratory activity and PPI influenced only by disruption of NRG1
 - No gene × gene interaction
- Recognition memory not influenced by disruption of either/both genes
 - No gene × gene interaction
- Sociability impaired only on co-disruption of both NRG1 and DISC1
 - Dimension-specific, ‘pure’ gene × gene interaction
- Psychosis phenotype influenced by interaction of risk genes with other risk genes in a dimension-specific manner?
- Epistasis neglected and requiring systematic investigation in risk for psychosis within a milieu of developmental disorders and dimensions of psychopathology
ACKNOWLEDGEMENTS

RCSI MCT
Colm O’Tuathaigh
Rachel Cox
Lieve Desbonnet
Claire O’Leary
Emilie Petit

Trinity College Dublin, Ireland
Francesc Perez-Branguli
Kevin Mitchell

University College Cork, Ireland
Gerard Moloney
Gerard Clarke
John Cryan
Timothy Dinan

Università degli Studi di Milano, Italy
Fabio Fumagalli
Marco Riva

University of New South Wales, Australia
Richard Harvey
Donna Lai

RIKEN, Japan
Yoichi Gondo

These studies were supported by
Stanley Medical Research Institute
Wellcome Trust
Cavan-Monaghan Mental Health Service
Science Foundation Ireland