Introduction

• Catechol-o-methyltransferase (COMT) metabolises catechol-containing compounds, including dopamine.
• COMT is genetically associated with dopamine-modulated cognitive and emotional phenotypes, and possibly with various psychiatric disorders.
• Most existing studies of COMT in this field have focused on the prefrontal cortex. However, COMT is widely expressed throughout the brain, particularly the hippocampus.¹

Aim

• To examine the acute effects of a centrally-acting COMT inhibitor, tolcapone, on dopamine metabolism in tissue homogenates of rat hippocampus, prefrontal cortex, striatum and cerebellum.
• To study both male and female rats, since COMT is sexually dimorphic².

Results

Tolcapone affects dopamine metabolism throughout the brain

Across all brain regions studied:

Tolcapone
• Increased DOPAC (p<0.05)
• Decreased HVA (p<0.001)
• Increased DOPAC/HVA (p<0.001)

Tolcapone affects females more than males

Across all brain regions studied, the DOPAC/HVA data revealed a significant treatment*gender*region interaction (p<0.05):

In striatum and prefrontal cortex, the effect of tolcapone on dopamine metabolism was more pronounced in females than males.

Conclusions

• The COMT inhibitor, tolcapone had a significant effect on dopamine metabolism in all brain regions studied.
• These data suggest that COMT plays an important role in regulating dopamine function throughout the brain, including the hippocampus.
• The present data also highlight sexually dimorphic effects, as well differential effects between dorsal and ventral hippocampus, which warrant further investigation.
• The findings of this study may be relevant for the development of COMT inhibitors as potential treatment of dopamine dysregulation in disorders such as schizophrenia.

Abbreviations

Cerebellum (Cer), hippocampus (HC), prefrontal cortex (Pfc) and striatum (Str).

References


Acknowledgements

This research was supported by a Medical Research Council Project Grant (PJH, EMT and TS), and a MRC studentship (LML).