Identifying transcriptomic biomarkers for the clinical response to escitalopram in the inflammatory cytokine pathway

Timothy R. Powell1, Leonard C. Schalkwyk1, Andrew H. Heffernan1, Gerome Breen1, Timothy Lawrence1, Tom Price1, Anne Fannon2, Christopher A. Taggart1, Andrea Daniels3, Carmine Paternostro1, Cathryn Lewis1, Peter McGuffin1, Rudolf Uher1, Katherine E. Tansey1, and Ursula M. D’Souza1

1 MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King’s College London, De Crespigny Park, London, UK. 2 Centre for the Cellular Basis of Behaviour, The James Black Centre, King’s College London, Coldharbour Lane, London, UK

Introduction
- Research shows an increase in proinflammatory cytokines, acute-phase proteins and chemokines are present in individuals suffering from depression (Miller et al., 2008).
- Interestingly, antidepressants have anti-inflammatory properties (Roumestan et al., 2007) and evidence suggests that the inter-individual variability in response to antidepressants may reflect genetic differences in the inflammatory cytokine pathway (Uher et al., 2010).
- In particular, the SNPs rs1267575 in interleukin-11 (IL11) and rs7601617 in interleukin 6 (IL6), and protein levels of Tumour Necrosis Factor (TNF) have previously been implicated in predicting the clinical response to the antidepressant escitalopram, a selective serotonin reuptake inhibitor (SSRI).
- As opposed to genotype biomarkers, transcriptomic biomarkers have the advantage of capturing the functional output of genotypes interacting with epigenetic and transcription factor binding; both of which have additionally been linked to antidepressant response (Casael et al., 2006; Thome et al., 2000).
- Identifying transcriptomic biomarkers at baseline is useful in patient-specific treatment selection. Investigating the gene expression effects of antidepressants after treatment in relation to clinical response is useful in understanding the mechanism of antidepressants and the cause if inter-individual variability.

• The Aim of the current study was to investigate mRNA expression of IL11, IL6 and TNF as well as genes in the wider inflammatory cytokine pathway in depressed patients who were either responders (n=25) or non-responders (n=21) to escitalopram using a subset of samples in the Genome-Based Therapeutic Drugs for Depression (GENDEP) project.

Methods
- Clinical response was based on a percentage change in MADRS score over a 12 week treatment period with escitalopram.
- Blood was collected at baseline and after eight weeks of treatment with escitalopram.
- Expression of mRNA was assessed using the Human Inflammatory Cytokines and Receptors PCR Array (SABiosciences).
- The relative quantitative method of normalisation was used which required the selection of appropriate reference genes using GeNorm and Normfinder analyses.
- Differences between responders and non-responders were assessed using binary logistic regressions covarying for age, sex, centre of treatment and baseline MADRS score. Genotype differences were assessed using linear regressions covarying for age, sex and centre of treatment.
- Genes in the wider inflammatory cytokine pathway were treated in an a priori manner and underwent False Discovery Rate (FDR) of multiple correction.

Discussion
- TNF and its targets may act as putative transcriptomic biomarkers for the clinical response to escitalopram (Figs 2 and 4). TNF has been previously shown to regulate serotonin synthesis (Miller et al., 2008), serotonin transporter gene expression (Zhu et al., 2006) and hippocampal neurogenesis (Monje et al., 2003), all relating the therapeutic effects of antidepressants.
- IL11 shows differential expression between responders and non-responders but only after eight weeks of treatment with escitalopram (Fig. 3). Moreover, expression differences in IL11 were found to be mediated by genotype-specific expression changes relating to rs1126757 (Fig. 4), suggesting a functional role for this SNP in mediating escitalopram response.
- Results confirm findings at the protein level which show that responders to antidepressants tend to show lower levels of inflammatory cytokines than non-responders (Tuglu et al., 2003), see Fig. 5.
- This study provides strong support for the role of genetic differences in the inflammatory cytokine pathway in mediating response to escitalopram.
- Results require replication in larger cohorts.

References
- Thome et al., (2000) IL11 shows differential expression between responders and non-responders but only after eight weeks of treatment with escitalopram (Fig. 3). Moreover, expression differences in IL11 were found to be mediated by genotype-specific expression changes relating to rs1126757 (Fig. 4), suggesting a functional role for this SNP in mediating escitalopram response.
- Results confirm findings at the protein level which show that responders to antidepressants tend to show lower levels of inflammatory cytokines than non-responders (Tuglu et al., 2003), see Fig. 5.
- This study provides strong support for the role of genetic differences in the inflammatory cytokine pathway in mediating response to escitalopram.
- Results require replication in larger cohorts.

Fig. 1 Normfinder and GeNorm analyses reveal the three most stable reference genes in blood following escitalopram treatment only are HPRT1, RPL13A and GAPDH.

Fig. 2 Bar graph showing the mean relative expression of the target gene TNF in responder and non-responder groups at baseline (week 0) and after escitalopram treatment (week 8). Significant differences of p≤0.01 are denoted by **.

Fig. 3 (left) shows the differences between responders and non-responders in the target gene IL11, p≤0.05 are denoted by *.

Fig. 4 (right) shows the differences in expression between carriers of the GG genotype (associated with non-response) compared to those carrying one or more copies of the A allele AA/AG (associated with clinical response) of the rs1126757 SNP, p≤0.01 are denoted by **.

Fig. 5 depicts the top gene expression differences in the inflammatory cytokine pathway between responders and non-responders to escitalopram at baseline (left) and after eight weeks escitalopram treatment (right). Downward arrows represent lower expression in responders, upward arrows represent higher expression in responders.

Acknowledgements

• The current project is financially supported by the NIH/NIMH and the European Commission Framework 6 grant, EC Contract Ref.: LIH-CT-2003-503428. Tuglu et al., 2003 increased serum tumor necrosis factor-alpha levels and treatment response in major depressive disorder. Psychopharmacology, 170: 435-439.