CORTISOL DECREASES HIPPOCAMPAL NEUROGENESIS BY REGULATING THE ENZYME SGK1

C. Anacker1, P.A. Zunzain, A. Cattaneo2, K. Masaelyan1, S. Thuret1, J. Price1, C.M. Pariente1.
1Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King’s College London, United Kingdom
2IRCCS San Giovanni di Dio, Genetics Unit, Brescia, Italy.

BACKGROUND

- Glucocorticoids and adult hippocampal neurogenesis in depression
 - Increased levels of glucocorticoid hormones are commonly observed in situations of chronic stress and in depression.
 - High levels of glucocorticoid hormones decrease adult hippocampal neurogenesis
 - Adult hippocampal neurogenesis has recently been demonstrated to contribute to the development of depressive symptoms in situations of stress (Snyder et al., 2011)

- Glucocorticoids (cortisol in humans) can activate two intracellular receptors:
 - Mineralocorticoid Receptor (MR), high affinity
 - Glucocorticoid Receptor (GR), low affinity

- The enzyme, serum- and glucocorticoid-regulated kinase 1 (SGK1) mediates some effects of glucocorticoids on working memory, oligodendrocyte morphology and glucocorticoid responsiveness. (Yuen et al., 2011; Miyata et al., 2011, Luca et al., 2009)
- GR function is critically regulated by phosphorylation at the serine residues S203, S211, but not at S226. *p<0.05, **p<0.01

HYPOTHESIS

- MR activation mediates the effects of low cortisol concentrations, while high concentrations of cortisol activate the GR in human hippocampal progenitor cells.
- Cortisol decreases human hippocampal neurogenesis via GR-dependent upregulation of SGK1.
- SGK1 regulates GR function by phosphorylation.

METHODS

- Human embryonic hippocampal progenitor cell line HPC03A/07 (ReNeuron, UK)

Proliferation assay

- 3 days Proliferation
- 4 days BrdU

- Treatment
 - Cortisol, Spironolactone 100nM (MR antagonist), RU486 50nM (GR antagonist), GSK650394 (SGK1 inhibitor)

Differentiation assay

- 3 days Proliferation
- 7 days Differentiation
- Treatment
 - Dcx & MAP2

RESULTS

- Bimodal effects of cortisol on cell proliferation

CONCLUSIONS

- MR activation by low concentrations of cortisol increases proliferation, while GR activation by high concentrations decreases proliferation
- GR-dependent activation of SGK1 expression mediates the cortisol-induced reduction in neurogenesis
- Cortisol-induced SGK1 expression activates the GR by phosphorylation at the GR serine residues S203 and S211