Aberrant neural and cognitive response to emotional faces stimuli in healthy monozygotic twins at heritable risk of depression

Miskowiak KW1, Glerup L1, Vestbo C1, Harmer CJ2, Kessing LV1, Vinberg M1

1Department of Psychiatry, Copenhagen University Hospital, Rigshospitalet
2Department of Psychiatry, Warneford Hospital, University of Oxford

Background

- Negative bias in cognitive and neural processing of emotional information occurs in depressed patients and recovered depressives
- A few recent studies suggest that negative bias may also exist in healthy individuals at risk of depression
- If so, negative neurocognitive bias could be an endophenotype for depression; a disease-associated, state-independent and heritable trait
- We aimed to investigate this by exploring whether healthy monozygotic (MZ) twins with a co-twin history of depression show negative bias in cognitive and neural response to emotional faces

Methods

- 30 healthy, never-depressed MZ twins with a co-twin history of depression (high-risk) (n=13) or with no co-twin or family history of psychiatric illness (controls) (n=17) were enrolled in the study as part of a 6-8 year follow-up (for original study see [1])
- Neural responses to fearful and happy faces were assessed using functional magnetic resonance imaging (fMRI) during which time participants performed a gender discrimination task
- After the scan attention to and recognition of emotional facial expressions were assessed with a faces dot-probe task and facial expression recognition task from the Emotional Test Battery
- Mood and subjective state were assessed with the Beck Depression Inventory, State-Trait Anxiety Questionnaire and Visual Analogue Scales of relevant subjective states

Results

Neural response to emotion
- High-risk twins showed increased neural response to happy and fearful faces in the inferior, medial and superior prefrontal cortex (PFC), anterior cingulate cortex (ACC) and occipito-parietal cortex (green); a network partially overlapping with regions activated by faces in controls (red)
- Amygdala response showed no differences between groups (p-values>0.3)

Facial expression recognition
- High-risk twins were impaired on facial expression recognition across all emotions, as reflected by increased response latency (F(1,28)=5.6, p=0.03)

Conclusions

- The elevated fronto-parietal and ACC response to emotional faces and impaired gender discrimination in high-risk twins may reflect increased attention to the (irrelevant) emotionality of the faces and thus greater response conflict during gender discrimination
- This interpretation is supported by their increased vigilance towards fearful faces and impaired facial expression recognition
- Notably, the increased superior PFC response and absence of changes in amygdala response to emotional faces is similar to observations in recovered depressives [2] and may represent a compensatory mechanism
- In conclusion, the findings highlight negative bias in neurocognitive response to emotional faces as a key endophenotype for depression

\[\text{References}\]

The authors of this poster have no conflicts of interests