OXIDATIVE STRESS AND BRAIN VOLUMES IN EARLY ONSET PSYCHOSIS:
ROLE OF DECREASED GLUTATHIONE LEVELS IN PROGRESSIVE LOSS OF CORTICAL GREY MATTER.

a Marta Rapado-Castro, PhD; b-d David Fraguas, M.D.; e Ana Gonzalez-Pinto, MD, PhD; f Juan Antonio Micó, MD, PhD; g Mara Parellada, MD, PhD; h Mónica Martínez-Cengotitabengoa, PhD; f Santiago Reig, PhD; f Josefina Castro-Fornieles, MD, PhD; i Immaculada Baeza, MD, PhD; j Joost Janssen, PhD; k Manuel Desco, MD, PhD; a Celso Arango, MD, PhD.

a Department of Child and Adolescent Psychiatry, Hospital General Universitari Gregorio Marañón, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
b Department of Service de Mental, Universitario Hospitalario de Albacete, Spain
c Stanley Institute International Mood Disorders Research Center, 03-RC-003, Hospital Santiago Apóstol, Vitoria, CIBERSAM, Spain
d Department of Neurosciences, College of Medicine, University of Cádiz, Cádiz, Spain
e Department of Experimental Medicine, Hospital General Universitario Gregorio Marañón, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain.
f Department of Child and Adolescent Psychiatry and Psychology, Instituto de Neurociencias, IDIAPS, GR-1119, Hospital clinic de Barcelona, Department of Psychiatry and Psychology, University of Barcelona, CIBERSAM, Spain

OBJECTIVES
• To assess the relationship between oxidative balance and progression of cortical GM in a multicenter sample of first-episode early-onset psychosis (EOP) patients at two-year follow-up.

RESULTS

<table>
<thead>
<tr>
<th>RELATIONSHIP BETWEEN BASELINE OXIDATIVE STRESS MARKERS AND BRAIN VOLUME CHANGES IN FIRST EPISODE EOP PATIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAS</td>
</tr>
<tr>
<td>Change in left frontal GM volume</td>
</tr>
<tr>
<td>Change in left parietal GM volume</td>
</tr>
<tr>
<td>Change in left temporal GM volume</td>
</tr>
<tr>
<td>Change in right frontal GM volume</td>
</tr>
<tr>
<td>Change in right parietal GM volume</td>
</tr>
<tr>
<td>Change in right temporal GM volume</td>
</tr>
<tr>
<td>Change in total sulcal CSF volume</td>
</tr>
</tbody>
</table>

• Among patients, after controlling for possible confounding variables, baseline lower GSH levels were significantly associated with greater volume decrease in parietal (t=0.779, p<0.001) and temporal (t=0.779, p<0.001) left gray matter, and with greater increase of total CSF (r=0.722, p<0.002).

• Controls did not show significant associations between brain volume changes and oxidative/antioxidant markers (table 1).

CONCLUSIONS
• GSH deficit measure during the first psychotic episode is related with loss of cortical GM two years later in patients with first-episode EOP, suggesting that oxidative damage may contribute to the progressive loss of cortical GM found in patients with first-episode psychosis.

REFERENCES:

DISCLOSURES:
• A sample of 48 patients (13 females, mean age 15.9 ± 1.5 years) and 56 age- and gender- matched healthy controls (19 females, 15.3 ± 1.5 years) were assessed.
• Magnetic resonance imaging (MRI) scans performed both at the time of the first psychotic episode and 2 years later were used for volumetric measurements of left and right gray matter regions (frontal, parietal, and temporal lobes), and total sulcal cerebrospinal fluid (CSF) using automated method based in Talairach atlas. At baseline total antioxidant status (TAS), and lipid peroxidation were determined in plasma. Enzyme activities (cathepsin, glutathione peroxidase, and superoxide dismutase) and total glutathione (GSH) levels were determined in erythrocytes.
• Multiple linear analysis (general linear model, MANCOVA/OLS) was used to assess the association between oxidative/antioxidant markers and brain volumes changes controlling for age, gender, smoking status, psychopathology, mean cumulative antipsychotic dose, length of illness at MRI and comparison group (schizophrenia & schizoaffective disorder (n=27), bipolar disorder (n=12), and other psychoses (n=9)).
• We conducted two separate multivariate analyses: 1) for patients (using the previous confounders) and 2) for controls (controlled for age, gender, smoking status, and race). In order to analyze the relationship between oxidative stress markers and changes on brain volumes during the two-year follow-up, arithmetic change values (2-year volume minus baseline volume) were obtained for each of the a priori hypothesized regions, adjusting for multiple-comparisons by a Bonferroni correction.