Ventricular Prefrontal Cortex Activity Is Required for Anxiety Expression: Distinct Neurochemical Mechanisms Evidence

Stern CAJ, Do Monte FH, Gazarini L, Carobrez AP & Bertoglio LJ

Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil.

Corresponding author e-mail: crisstern@yahoo.com.br – Lab website: http://www.bertogliolab.ccb.ufsc.br

Purpose of Study

- The ventromedial prefrontal cortex (vmPFC) has been implicated in anxiety regulation;
- Lesion studies aimed to the vmPFC have shown an anxiolytic-like effect in rats exposed to the elevated plus-maze (EPM), while others have reported an anxiogenic-like or even none effect;
- We sought to clarify the vmPFC role in anxiety by blocking the local synaptic activity using cobalt infusion prior to the EPM test. Next, we investigated whether the antagonism of vmPFC adrenergic beta-1, cholinergic muscarinic or glutamatergic NMDA receptors reduces anxiety-related behavior.

Methods

General procedures

![Schematic diagrams showing the drug injection sites inside (red circles) the vmPFC.](image)

Results

Histological analysis

![Photomicrograph of representative infusion sites placement (indicated by arrows) in the rat vmPFC (scale bar = 500 μm).](image)

Legend: Left: photomicrograph of representative infusion sites placement (indicated by arrows) in the rat vmPFC (scale bar = 500 μm). Right: Schematic diagrams showing the drug injection sites inside (red circles) the vmPFC.

Discussion

- vmPFC inactivation induced by cobalt attenuates anxiety-related behavior;
- The cobalt effect is temporary because it was no longer observed when the interval between drug infusion and EPM testing was 10 min;
- vmPFC recruits adrenergic beta-1, cholinergic muscarinic and glutamatergic NMDA receptors to modulate anxiety-related behavior.

![Graphs showing the results of the experiments.](image)

* *p<0.05 relative to controls (one-way ANOVA followed by Neumann Keuls test; values are expressed as mean ± S.E.M).