

BDNF/TrkB signaling in learning and memory: The effects of 7,8-dihydroxyflavone on object memory

E. Bollen, S. Akkerman, H.M.W. Steinbusch, J. Prickaerts

Dept of Psychiatry and Neuropsychology, Maastricht University, The Netherlands

Introduction

- Brain derived neurotrophic factor (BDNF) is a neurotrophin which has emerged as an important regulator of synaptic plasticity in the central nervous system. BDNF promotes neuronal survival and growth, but can also influence synaptic plasticity in a more rapid manner e.g. via interaction with glutamate receptors and Ca²⁺ release [1].
- In hippocampal long-term potentiation (LTP), one of the most commonly studied forms of plasticity which is generally considered as the cellular correlate of memory formation, BDNF has been attributed a critical role [2].
- Currently, much memory research focuses on finding memory enhancers. BDNF has poor pharmacokinetic properties and is not suited for pharmacological treatment.
- Recently, 7,8-dihydroxyflavone (7,8-DHF) was identified as the first selective agonist of TrkB, the main receptor of BDNF [3].

AIMS

- Evaluate the potential of 7,8-DHF as a memory enhancer.
- Study the involvement of BDNF signaling in early and late memory consolidation processes.

Discussion

- 7,8-DHF improves memory when administered both immediately or 3 h after learning.
- •The lowest effective dose was lower, i.e. 0.3 mg/kg, when 7,8-DHF was administered during the late consolidation phase compared to 1 mg/kg during early consolidation. This may suggest a stronger involvement of BDNF/TrkB signaling in late memory consolidation.
- •In future research, we will focus on gaining insight into the signaling pathways involved in memory enhancement following BDNF/TrkB upregulation.

References

- [1] Blum, R., Konnerth, A. (2005) Neurotrophin-mediated rapid signaling in the central nervous system: Mechanisms and functions. Physiology, 20, 70-78.
- [2] Bramham, C. R., Messaoudi, E. (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Progress in Neurobiology, 76, 99-125.
- [3] Jang, S. W., Liu, X., Yepes, M., Shepherd, K. R., Miller, G. W., Liu, Y., Wilson, W. D., Xiao, G., Bianchi, B., Sun, Y. E., Ye, K. (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl. Acad. Sci. U.S.A., 107, 2687-2692.

Methods

Object recognition task (ORT)

15 Male Wistar Rats were tested repeatedly in the ORT

Memory performance is reported using the discrimination index d2

 $d2 = \frac{\text{Exploration novel - Exploration old}}{\text{Exploration novel + Exploration old}}$

Treatment

7,8-dihydroxyflavone was dissolved in vehicle (96% 0.5% tylose and 4% tween80) and given p.o. immediately or 3 h after T1 (volume 2 ml/kg)

CONDITIONS	
T+0h	T+3h
Vehicle	Vehicle
	0.1 mg/kg
0.3 mg/kg	0.3 mg/kg
1 mg/kg	1 mg/kg
3 mg/kg	3 mg/kg

Results

7,8-DHF improves memory when given immediately after learning in a dosedependent manner.

The lowest effective dose is 1 mg/kg.

7,8-DHF improves memory when given 3 h after learning.

The lowest effective dose is 0.3 mg/kg.

(*) *p*<0.1, **p*<0.01; ****p*<0.001 using ANOVA

There was no potential conflict of interest for the authors in the presented research